
16.2

height and slope. You should choose two points that are most convenient. The displacement can also be found
using any convenient point.

Check Your Understanding The propagation velocity of a transverse or longitudinal mechanical wave
may be constant as the wave disturbance moves through the medium. Consider a transverse mechanical wave:
Is the velocity of the medium also constant?

16.2 | Mathematics of Waves

Learning Objectives

By the end of this section, you will be able to:

• Model a wave, moving with a constant wave velocity, with a mathematical expression

• Calculate the velocity and acceleration of the medium

• Show how the velocity of the medium differs from the wave velocity (propagation velocity)

In the previous section, we described periodic waves by their characteristics of wavelength, period, amplitude, and wave
speed of the wave. Waves can also be described by the motion of the particles of the medium through which the waves
move. The position of particles of the medium can be mathematically modeled as wave functions, which can be used to
find the position, velocity, and acceleration of the particles of the medium of the wave at any time.

Pulses
A pulse can be described as wave consisting of a single disturbance that moves through the medium with a constant
amplitude. The pulse moves as a pattern that maintains its shape as it propagates with a constant wave speed. Because the
wave speed is constant, the distance the pulse moves in a time Δt is equal to Δx = vΔt (Figure 16.8).

Figure 16.8 The pulse at time t = 0 is centered on x = 0 with

amplitude A. The pulse moves as a pattern with a constant shape, with
a constant maximum value A. The velocity is constant and the pulse
moves a distance Δx = vΔt in a time Δt. The distance traveled is

measured with any convenient point on the pulse. In this figure, the
crest is used.

Modeling a One-Dimensional Sinusoidal Wave using a Wave
Function
Consider a string kept at a constant tension FT where one end is fixed and the free end is oscillated between y = +A and
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y = −A by a mechanical device at a constant frequency. Figure 16.9 shows snapshots of the wave at an interval of an

eighth of a period, beginning after one period (t = T).

Figure 16.9 Snapshots of a transverse wave moving through a string under tension, beginning at

time t = T and taken at intervals of 1
8T . Colored dots are used to highlight points on the string.

Points that are a wavelength apart in the x-direction are highlighted with the same color dots.

Notice that each select point on the string (marked by colored dots) oscillates up and down in simple harmonic motion,
between y = + A and y = −A, with a period T. The wave on the string is sinusoidal and is translating in the positive

x-direction as time progresses.

At this point, it is useful to recall from your study of algebra that if f(x) is some function, then f (x − d) is the same function

translated in the positive x-direction by a distance d. The function f (x + d) is the same function translated in the negative

x-direction by a distance d. We want to define a wave function that will give the y-position of each segment of the string for
every position x along the string for every time t.

Looking at the first snapshot in Figure 16.9, the y-position of the string between x = 0 and x = λ can be modeled as a

sine function. This wave propagates down the string one wavelength in one period, as seen in the last snapshot. The wave
therefore moves with a constant wave speed of v = λ/T .

Recall that a sine function is a function of the angle θ , oscillating between +1 and −1 , and repeating every 2π radians

(Figure 16.10). However, the y-position of the medium, or the wave function, oscillates between +A and −A , and

repeats every wavelength λ .
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Figure 16.10 A sine function oscillates between +1 and −1 every 2π radians.

To construct our model of the wave using a periodic function, consider the ratio of the angle and the position,

θ
x = 2π

λ ,

θ = 2π
λ x.

Using θ = 2π
λ x and multiplying the sine function by the amplitude A, we can now model the y-position of the string as a

function of the position x:

y(x) = A sin⎛
⎝
2π
λ x⎞

⎠.

The wave on the string travels in the positive x-direction with a constant velocity v, and moves a distance vt in a time t. The
wave function can now be defined by

y(x, t) = A sin⎛
⎝
2π
λ (x − vt)⎞⎠.

It is often convenient to rewrite this wave function in a more compact form. Multiplying through by the ratio 2π
λ leads to

the equation

y(x, t) = A sin⎛
⎝
2π
λ x − 2π

λ vt⎞⎠.

The value 2π
λ is defined as the wave number. The symbol for the wave number is k and has units of inverse meters,

m−1 :

(16.2)k ≡ 2π
λ

Recall from Oscillations that the angular frequency is defined as ω ≡ 2π
T . The second term of the wave function becomes

2π
λ vt = 2π

λ
⎛
⎝
λ
T

⎞
⎠t = 2π

T t = ωt.

The wave function for a simple harmonic wave on a string reduces to

y(x, t) = A sin(kx ∓ ωt),

where A is the amplitude, k = 2π
λ is the wave number, ω = 2π

T is the angular frequency, the minus sign is for waves

moving in the positive x-direction, and the plus sign is for waves moving in the negative x-direction. The velocity of the
wave is equal to

798 Chapter 16 | Waves

This OpenStax book is available for free at http://cnx.org/content/col12031/1.10



(16.3)v = λ
T = λ

T
⎛
⎝
2π
2π

⎞
⎠ = ω

k .

Think back to our discussion of a mass on a spring, when the position of the mass was modeled as x(t) = A cos⎛
⎝ωt + ϕ⎞

⎠.
The angle ϕ is a phase shift, added to allow for the fact that the mass may have initial conditions other than x = +A and

v = 0. For similar reasons, the initial phase is added to the wave function. The wave function modeling a sinusoidal wave,

allowing for an initial phase shift ϕ, is

(16.4)y(x, t) = A sin⎛
⎝kx ∓ ωt + ϕ⎞

⎠

The value

(16.5)⎛
⎝kx ∓ ωt + ϕ⎞

⎠

is known as the phase of the wave, where ϕ is the initial phase of the wave function. Whether the temporal term ωt is

negative or positive depends on the direction of the wave. First consider the minus sign for a wave with an initial phase
equal to zero ⎛

⎝ϕ = 0⎞
⎠. The phase of the wave would be (kx − ωt). Consider following a point on a wave, such as a

crest. A crest will occur when sin (kx − ωt) = 1.00 , that is, when kx − ωt = nπ + π
2, for any integral value of n. For

instance, one particular crest occurs at kx − ωt = π
2. As the wave moves, time increases and x must also increase to keep

the phase equal to π
2. Therefore, the minus sign is for a wave moving in the positive x-direction. Using the plus sign,

kx + ωt = π
2. As time increases, x must decrease to keep the phase equal to π

2. The plus sign is used for waves moving in

the negative x-direction. In summary, y(x, t) = A sin⎛
⎝kx − ωt + ϕ⎞

⎠ models a wave moving in the positive x-direction and

y(x, t) = A sin⎛
⎝kx + ωt + ϕ⎞

⎠ models a wave moving in the negative x-direction.

Equation 16.4 is known as a simple harmonic wave function. A wave function is any function such that
f (x, t) = f (x − vt). Later in this chapter, we will see that it is a solution to the linear wave equation. Note that

y(x, t) = A cos⎛
⎝kx + ωt + ϕ′⎞

⎠ works equally well because it corresponds to a different phase shift ϕ′ = ϕ − π
2.

Problem-Solving Strategy: Finding the Characteristics of a Sinusoidal Wave

1. To find the amplitude, wavelength, period, and frequency of a sinusoidal wave, write down the wave function
in the form y(x, t) = A sin⎛

⎝kx − ωt + ϕ⎞
⎠.

2. The amplitude can be read straight from the equation and is equal to A.

3. The period of the wave can be derived from the angular frequency ⎛
⎝T = 2π

ω
⎞
⎠.

4. The frequency can be found using f = 1
T .

5. The wavelength can be found using the wave number ⎛
⎝λ = 2π

k
⎞
⎠.
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Example 16.3

Characteristics of a Traveling Wave on a String

A transverse wave on a taut string is modeled with the wave function

y(x, t) = A sin(kx − wt) = 0.2 m sin⎛
⎝6.28 m−1 x − 1.57 s−1 t⎞

⎠.

Find the amplitude, wavelength, period, and speed of the wave.

Strategy

All these characteristics of the wave can be found from the constants included in the equation or from simple
combinations of these constants.

Solution
1. The amplitude, wave number, and angular frequency can be read directly from the wave equation:

y(x, t) = A sin(kx − wt) = 0.2 m sin⎛
⎝6.28 m−1 x − 1.57 s−1 t⎞

⎠.

(A = 0.2 m; k = 6.28 m−1; ω = 1.57 s−1)
2. The wave number can be used to find the wavelength:

k = 2π
λ .

λ = 2π
k = 2π

6.28 m−1 = 1.0 m.

3. The period of the wave can be found using the angular frequency:

ω = 2π
T .

T = 2π
ω = 2π

1.57 s−1 = 4 s.

4. The speed of the wave can be found using the wave number and the angular frequency. The direction of
the wave can be determined by considering the sign of kx ∓ ωt : A negative sign suggests that the wave

is moving in the positive x-direction:

|v| = ω
k = 1.57 s−1

6.28 m−1 = 0.25 m/s.

Significance

All of the characteristics of the wave are contained in the wave function. Note that the wave speed is the speed
of the wave in the direction parallel to the motion of the wave. Plotting the height of the medium y versus the
position x for two times t = 0.00 s and t = 0.80 s can provide a graphical visualization of the wave (Figure

16.11).
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16.3

Figure 16.11 A graph of height of the wave y as a function of position x for snapshots of the wave at two times. The
dotted line represents the wave at time t = 0.00 s and the solid line represents the wave at t = 0.80 s. Since the

wave velocity is constant, the distance the wave travels is the wave velocity times the time interval. The black dots
indicate the points used to measure the displacement of the wave. The medium moves up and down, whereas the wave
moves to the right.

There is a second velocity to the motion. In this example, the wave is transverse, moving horizontally as the
medium oscillates up and down perpendicular to the direction of motion. The graph in Figure 16.12 shows the
motion of the medium at point x = 0.60 m as a function of time. Notice that the medium of the wave oscillates

up and down between y = + 0.20 m and y = −0.20 m every period of 4.0 seconds.

Figure 16.12 A graph of height of the wave y as a function of time t for the position x = 0.6 m. The medium

oscillates between y = + 0.20 m and y = −0.20 m every period. The period represented picks two convenient

points in the oscillations to measure the period. The period can be measured between any two adjacent points with
the same amplitude and the same velocity, (∂ y/∂ t). The velocity can be found by looking at the slope tangent to the

point on a y-versus-t plot. Notice that at times t = 3.00 s and t = 7.00s, the heights and the velocities are the

same and the period of the oscillation is 4.00 s.

Check Your Understanding The wave function above is derived using a sine function. Can a cosine
function be used instead?

Velocity and Acceleration of the Medium
As seen in Example 16.4, the wave speed is constant and represents the speed of the wave as it propagates through
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the medium, not the speed of the particles that make up the medium. The particles of the medium oscillate around an
equilibrium position as the wave propagates through the medium. In the case of the transverse wave propagating in the
x-direction, the particles oscillate up and down in the y-direction, perpendicular to the motion of the wave. The velocity
of the particles of the medium is not constant, which means there is an acceleration. The velocity of the medium, which
is perpendicular to the wave velocity in a transverse wave, can be found by taking the partial derivative of the position
equation with respect to time. The partial derivative is found by taking the derivative of the function, treating all variables
as constants, except for the variable in question. In the case of the partial derivative with respect to time t, the position x is
treated as a constant. Although this may sound strange if you haven’t seen it before, the object of this exercise is to find the
transverse velocity at a point, so in this sense, the x-position is not changing. We have

y(x, t) = A sin(kx − ωt + ϕ)

vy(x, t) = ∂ y(x, t)
∂ t = ∂

∂ t
⎛
⎝A sin(kx − ωt + ϕ)⎞

⎠

= −Aω cos(kx − ωt + ϕ)
= −vy max cos(kx − ωt + ϕ).

The magnitude of the maximum velocity of the medium is |vymax| = Aω . This may look familiar from the Oscillations

and a mass on a spring.

We can find the acceleration of the medium by taking the partial derivative of the velocity equation with respect to time,

ay (x, t) =
∂vy
∂ t = ∂

∂ t
⎛
⎝−Aω cos⎛

⎝kx − ωt + ϕ⎞
⎠
⎞
⎠

= −Aω2 sin⎛
⎝kx − ωt + ϕ⎞

⎠

= −ay max sin⎛
⎝kx − ωt + ϕ⎞

⎠.

The magnitude of the maximum acceleration is |aymax| = Aω2. The particles of the medium, or the mass elements,

oscillate in simple harmonic motion for a mechanical wave.

The Linear Wave Equation
We have just determined the velocity of the medium at a position x by taking the partial derivative, with respect to time, of
the position y. For a transverse wave, this velocity is perpendicular to the direction of propagation of the wave. We found
the acceleration by taking the partial derivative, with respect to time, of the velocity, which is the second time derivative of
the position:

ay (x, t) = ∂2 y(x, t)
∂ t2 = ∂2

∂ t2
⎛
⎝A sin⎛

⎝kx − ωt + ϕ⎞
⎠
⎞
⎠ = −Aω2 sin⎛

⎝kx − ωt + ϕ⎞
⎠.

Now consider the partial derivatives with respect to the other variable, the position x, holding the time constant. The first
derivative is the slope of the wave at a point x at a time t,

slope = ∂ y(x, t)
∂ x = ∂

∂ x
⎛
⎝A sin⎛

⎝kx − ωt + ϕ⎞
⎠
⎞
⎠ = Ak cos⎛

⎝kx − ωt + ϕ⎞
⎠.

The second partial derivative expresses how the slope of the wave changes with respect to position—in other words, the
curvature of the wave, where

curvature = ∂2 y(x, t)
∂ x2 = ∂2

∂2 x
⎛
⎝A sin⎛

⎝kx − ωt + ϕ⎞
⎠
⎞
⎠ = −Ak2 sin⎛

⎝kx − ωt + ϕ⎞
⎠.

The ratio of the acceleration and the curvature leads to a very important relationship in physics known as the linear wave
equation. Taking the ratio and using the equation v = ω/k yields the linear wave equation (also known simply as the wave

equation or the equation of a vibrating string),
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∂2 y(x, t)
∂ t2

∂2 y(x, t)
∂ x2

= −Aω2 sin⎛
⎝kx − ωt + ϕ⎞

⎠

−Ak2 sin⎛
⎝kx − ωt + ϕ⎞

⎠

= ω2

k2 = v2,

(16.6)∂2 y(x, t)
∂ x2 = 1

v2
∂2 y(x, t)

∂ t2 .

Equation 16.6 is the linear wave equation, which is one of the most important equations in physics and engineering. We
derived it here for a transverse wave, but it is equally important when investigating longitudinal waves. This relationship
was also derived using a sinusoidal wave, but it successfully describes any wave or pulse that has the form
y(x, t) = f (x ∓ vt). These waves result due to a linear restoring force of the medium—thus, the name linear wave

equation. Any wave function that satisfies this equation is a linear wave function.

An interesting aspect of the linear wave equation is that if two wave functions are individually solutions to the linear wave
equation, then the sum of the two linear wave functions is also a solution to the wave equation. Consider two transverse
waves that propagate along the x-axis, occupying the same medium. Assume that the individual waves can be modeled with
the wave functions y1 (x, t) = f (x ∓ vt) and y2 (x, t) = g(x ∓ vt), which are solutions to the linear wave equations and

are therefore linear wave functions. The sum of the wave functions is the wave function

y1 (x, t) + y2 (x, t) = f (x ∓ vt) + g(x ∓ vt).

Consider the linear wave equation:

∂2 ⎛
⎝ f + g⎞

⎠

∂ x2 = 1
v2

∂2 ⎛
⎝ f + g⎞

⎠

∂ t2

∂2 f
∂ x2 + ∂2g

∂ x2 = 1
v2

⎡

⎣
⎢ ∂2 f

∂ t2 + ∂2g
∂ t2

⎤

⎦
⎥ .

This has shown that if two linear wave functions are added algebraically, the resulting wave function is also linear. This
wave function models the displacement of the medium of the resulting wave at each position along the x-axis. If two linear
waves occupy the same medium, they are said to interfere. If these waves can be modeled with a linear wave function,
these wave functions add to form the wave equation of the wave resulting from the interference of the individual waves.
The displacement of the medium at every point of the resulting wave is the algebraic sum of the displacements due to the
individual waves.

Taking this analysis a step further, if wave functions y1 (x, t) = f (x ∓ vt) and y2 (x, t) = g(x ∓ vt) are solutions to the

linear wave equation, then Ay1 (x, t) + By2 (x, y), where A and B are constants, is also a solution to the linear wave

equation. This property is known as the principle of superposition. Interference and superposition are covered in more detail
in Interference of Waves.

Example 16.4

Interference of Waves on a String

Consider a very long string held taut by two students, one on each end. Student A oscillates the end of the string
producing a wave modeled with the wave function y1 (x, t) = A sin(kx − ωt) and student B oscillates the string

producing at twice the frequency, moving in the opposite direction. Both waves move at the same speed v = ω
k .

The two waves interfere to form a resulting wave whose wave function is yR (x, t) = y1 (x, t) + y2 (x, t). Find
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16.4

the velocity of the resulting wave using the linear wave equation
∂2 y(x, t)

∂ x2 = 1
v2

∂2 y(x, t)
∂ t2 .

Strategy

First, write the wave function for the wave created by the second student. Note that the angular frequency of
the second wave is twice the frequency of the first wave (2ω) , and since the velocity of the two waves are the

same, the wave number of the second wave is twice that of the first wave (2k). Next, write the wave equation

for the resulting wave function, which is the sum of the two individual wave functions. Then find the second
partial derivative with respect to position and the second partial derivative with respect to time. Use the linear
wave equation to find the velocity of the resulting wave.

Solution
1. Write the wave function of the second wave: y2 (x, t) = A sin(2kx + 2ωt).

2. Write the resulting wave function:

yR (x, t) = y1 (x, t) + y(x, t) = A sin(kx − ωt) + A sin(2kx + 2ωt).
3. Find the partial derivatives:

∂ yR (x, t)
∂ x = −Ak cos(kx − ωt) + 2Ak cos(2kx + 2ωt),

∂2 yR (x, t)
∂2 x

= −Ak2 sin(kx − ωt) − 4Ak2 sin(2kx + 2ωt),

∂ yR (x, t)
∂ t = −Aω cos(kx − ωt) + 2Aω cos(2kx + 2ωt),

∂2 yR (x, t)
∂2 t

= −Aω2 sin(kx − ωt) − 4Aω2 sin(2kx + 2ωt).

4. Use the wave equation to find the velocity of the resulting wave:

∂2 y(x, t)
∂ x2 = 1

v2
∂2 y(x, t)

∂ t2 ,

−Ak2 sin(kx − ωt) − 4Ak2 sin(2kx + 2ωt) = 1
v2

⎛
⎝−Aω2 sin(kx − ωt) − 4Aω2 sin(2kx + 2ωt)⎞

⎠,

k2 ⎛
⎝−A sin(kx − ωt) − 4A sin(2kx + 2ωt)⎞

⎠ = ω2

v2
⎛
⎝−A sin(kx − ωt) − 4A sin(2kx + 2ωt)⎞

⎠,

k2 = ω2

v2 , |v| = ω
k .

Significance

The speed of the resulting wave is equal to the speed of the original waves ⎛
⎝v = ω

k
⎞
⎠. We will show in the next

section that the speed of a simple harmonic wave on a string depends on the tension in the string and the mass per
length of the string. For this reason, it is not surprising that the component waves as well as the resultant wave all
travel at the same speed.

Check Your Understanding The wave equation
∂2 y(x, t)

∂ x2 = 1
v2

∂2 y(x, t)
∂ t2 works for any wave of the

form y(x, t) = f (x ∓ vt). In the previous section, we stated that a cosine function could also be used to model a

simple harmonic mechanical wave. Check if the wave

y(x, t) = 0.50 m cos⎛
⎝0.20π m−1 x − 4.00π s−1 t + π

10
⎞
⎠

is a solution to the wave equation.
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Any disturbance that complies with the wave equation can propagate as a wave moving along the x-axis with a wave speed
v. It works equally well for waves on a string, sound waves, and electromagnetic waves. This equation is extremely useful.
For example, it can be used to show that electromagnetic waves move at the speed of light.

16.3 | Wave Speed on a Stretched String

Learning Objectives

By the end of this section, you will be able to:

• Determine the factors that affect the speed of a wave on a string

• Write a mathematical expression for the speed of a wave on a string and generalize these
concepts for other media

The speed of a wave depends on the characteristics of the medium. For example, in the case of a guitar, the strings vibrate
to produce the sound. The speed of the waves on the strings, and the wavelength, determine the frequency of the sound
produced. The strings on a guitar have different thickness but may be made of similar material. They have different linear
densities, where the linear density is defined as the mass per length,

(16.7)µ = mass of string
length of string = m

l .

In this chapter, we consider only string with a constant linear density. If the linear density is constant, then the mass (Δm)
of a small length of string (Δx) is Δm = µΔx. For example, if the string has a length of 2.00 m and a mass of 0.06 kg, then

the linear density is µ = 0.06 kg
2.00 m = 0.03kg

m . If a 1.00-mm section is cut from the string, the mass of the 1.00-mm length

is Δm = µΔx = ⎛
⎝0.03kg

m
⎞
⎠0.001 m = 3.00 × 10−5 kg. The guitar also has a method to change the tension of the strings.

The tension of the strings is adjusted by turning spindles, called the tuning pegs, around which the strings are wrapped. For
the guitar, the linear density of the string and the tension in the string determine the speed of the waves in the string and the
frequency of the sound produced is proportional to the wave speed.

Wave Speed on a String under Tension
To see how the speed of a wave on a string depends on the tension and the linear density, consider a pulse sent down a taut
string (Figure 16.13). When the taut string is at rest at the equilibrium position, the tension in the string FT is constant.

Consider a small element of the string with a mass equal to Δm = µΔx. The mass element is at rest and in equilibrium and

the force of tension of either side of the mass element is equal and opposite.

Figure 16.13 Mass element of a string kept taut with a
tension FT . The mass element is in static equilibrium, and the

force of tension acting on either side of the mass element is
equal in magnitude and opposite in direction.

If you pluck a string under tension, a transverse wave moves in the positive x-direction, as shown in Figure 16.14. The
mass element is small but is enlarged in the figure to make it visible. The small mass element oscillates perpendicular to the
wave motion as a result of the restoring force provided by the string and does not move in the x-direction. The tension FT

in the string, which acts in the positive and negative x-direction, is approximately constant and is independent of position
and time.
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